

Prueba Final

10^a Olimpiada de Química

ubr	e z	ae	201
GR	AD	001	10

Nombre:	D.I	
Colegio	Sede	

- No comience a resolver el examen hasta que el docente lo autorice.
- El examen consta de cinco (5) problemas, cada uno de los cuales debe resolver en forma clara y ordenada en hojas blancas.
- Debe mostrar todas las operaciones que justifiquen la respuesta final.
- Recuerde que todas las cantidades deben ir acompañadas de sus correspondientes unidades.
- Al final encontrará el valor de algunas constantes y ecuaciones que le pueden servir de ayuda para dar solución adecuada a los problemas propuestos (Anexo 1).

1. QUÍMICA Y SOCIEDAD

Recientemente se ha detectado un incremento en los casos de obesidad infantil. Una posible explicación a este problema es el aumento en el consumo de bebidas azucaradas (gaseosas, jugos, té, etc). En la siguiente tabla se indica el contenido promedio de azúcar en 200 mL de varios tipos de bebidas embotelladas.

Tipo de bebida	Cantidad de azúcar (g)	
Gaseosas	22	
Jugos	17	
Leche de soja	15	
Té	16	
Bebidas deportivas	12	
Aguas saborizadas	10	

Responda las siguientes preguntas:

- a. (5 %) Cuál es el porcentaje en masa de cada átomo presente en la glucosa si su fórmula molecular es C6H12O6?
- b. (5 %) Si se quiere preparar 500 mL de un agua saborizada que tenga la misma concentración que se reporta en la tabla y se dispone de un azúcar con una pureza del 95 %, cuántos gramos de azúcar se necesita
- c. (5 %) La energía a partir de la glucosa se obtiene por medio de una reacción de oxidación total. Escriba v balancee la reacción correspondiente. Calcule el volumen de CO₂ producido a 25 °C y 1 atm cuando se consume una gaseosa de 350 mL.
- d. (5 %) Si 1 gramo de glucosa proporciona 3,79 kcal. Calcule cuánta energía le proporciona a un niño que

consuma diariamente dos gaseosas de 350 mL y un jugo de 300 mL. Además, calcule el % de calorías que aporta estas bebidas, si el consumo de calorías diario recomendado para niños de 9-13 años es aproximadamente 1500 kcal.

2. QUÍMICA Y MEDIO AMBIENTE

A través de un proceso de pirólisis (calentamiento controlado en atmósfera inerte) se puede obtener un biooil de la biomasa lignocelulósica que resulta de residuos forestales, el cual luego se usa para obtener biocombustibles. Sin embargo, el bio-oil contiene un alto contenido de compuestos oxigenados que disminuyen su estabilidad aparte de conferirle propiedades indeseables. Para eliminar estos grupos oxigenados se utiliza la reacción de hidrodesoxigenación (HDO) en presencia de un catalizador y altas presiones de hidrógeno. Un ejemplo de esta reacción se ilustra con el guaiacol que es un compuesto presente en el bio-oil (Figura 1).

$$\begin{array}{c} \text{OH} \\ \text{OH} \\$$

Figura 1. HDO del guaicol

a. (5%) Cuántos gramos de ciclohexano se pueden obtener a partir de una tonelada de biomasa lignocelulósica seca de la que se obtienen 10 L de bio-oil con un contenido de guaiacol del 15 % (p/v).

- **b.** (5 %) Cuántos litros de H_2 (medidos a 25 °C y 1 atmósfera de presión) se necesitan para hidrogenar el guaiacol contenido en una tonelada de biomasa lignocelulósica seca de la que se obtienen 10 L de bio-oil con un contenido de guaiacol del 15 % (p/v). Escriba la reacción de hidrogenación.
- **c.** (5 %) Un catalizador utilizado en la reacción contiene 1.0 % en peso de Pt. Durante la reacción se requiere que la relación molar Pt/guaiacol sea de 0,01. Si se tienen 1500 g de guaiacol, determine la masa de catalizador que se requiere utilizar durante la reacción.
- **d. (5 %)** De acuerdo a la información presentada, indique si durante la reacción se favorece el rompimiento de enlaces C-C o C-O.

3. QUÍMICA Y ECONOMÍA

Para toda la región de Latinoamérica, México es el máximo representante en el mercado de pinturas y recubrimientos. En la parte arquitectónica y de construcción el consumo está creciendo moderadamente según la tabla a continuación.

Segmento	V (miles de L)	Millones	Variación
	Año 2017	pesos	2016-2017
Emulsionadas	358900	9646	5.8%
Impermeabilizantes	94600	1986	3.6%
Otras	94900	5022	7.2%
Total	548400	16653	6.2%

INPRA latina Vol. 22 Nº 4 2017

Los segmentos más destacados son las pinturas emulsionadas e impermeabilizantes.

- a. **(5 %)** En la formulación de una pintura emulsionada, la cantidad de dióxido de titanio usado como pigmento es del 8.0 % (p/p). Teniendo en cuenta que la densidad de la pintura es de 1.40 g/mL, determine la cantidad de pigmento (**kg**) que incremento del 2016 al 2017.
- b. (5 %) El tripolifosfato de sodio ($Na_5P_3O_{10}$) se usa como aditivo dispersante en pinturas impermeabilizantes en una proporción másica aditivo-pintura de 1/1000. Suponiendo que la densidad del impermeabilizante es 1.40 g/mL, exprese la cantidad de fósforo presente en la pintura en ppm (p/v) y ppm (p/p). Además, determine % (p/v) de Na_2O en la misma muestra de pintura.
- c. (5 %) El óxido de hierro (III) usado como aditivo de pinturas para mejorar poder de recubrimiento, se obtiene a partir de la oxidación del hidróxido ferroso. El cual a su vez, se obtiene por la reacción del sulfato ferroso con hidróxido de sodio. Escriba las ecuaciones químicas balanceadas de las etapas que dan lugar a la formación del óxido de hierro.
- d. (5 %) Dibuje la estructura de Lewis del Fe_2O_3 (explique)

4. QUÍMICA Y TECNOLOGÍA

Los metales preciosos son aquellos que se encuentran directamente en la naturaleza en estado puro. Dentro de esta categoría se encuentran; el platino, el oro y la plata con aplicaciones importantes en la fabricación de circuitos electrónicos. Otros más escasos como el paladio y el rodio son usados como electrodos en celdas de combustible y como catalizadores para reducción de contaminantes en vehículos. A continuación se describen algunas características químicas de estos elementos.

- **a.** (5 %) Los yacimientos ricos en plata en Colombia se encuentran ubicados en Antioquia, Choco y Bolívar, suponga que en una de esas minas se extrajo un mineral de plata que contiene 12.46 % de cloruro de plata con un rendimiento al metal del 90.4 %. La plata obtenida se transforma en una aleación cuya relación es 916 g Ag/kg de aleación. Calcule la cantidad de aleación que se podrá obtener a partir de 2750 kg de mineral.
- **b.** (5 %) Se sabe que la plata tiene 37 isótopos que varían en peso. Sin embargo, el peso atómico de la plata calculado a partir de los dos isótopos más estables naturalmente (106.91 uma y 109.91 uma) es de 107.87 uma. ¿Determine la abundancia porcentual de cada isótopo?
- **c.** (5 %) El volumen molar (cm³/mol) del platino sólido es 9.09, sabiendo que solo el 71 % del volumen total de un trozo de un material está ocupado por átomos de platino (suponiendo que el resto es espacio vacío entre los átomos) calcule el radio del átomo de platino en angstroms (Å). Asuma el átomo como si fuera una esfera.
- **d.** (5 %) Si el paladio tiene un Z = 46, ¿Cuál es su configuración electrónica completa?, a partir de la configuración electrónica, ¿cuál es el periodo y el grupo del elemento dentro de la tabla? Además indique los cuatro números cuánticos de un electrón ubicado en el orbital 3p⁶.

5. QUÍMICA Y CURIOSIDADES

En lugares grandes y encerrados, la temperatura debiera medirse por medio de un termómetro gaseoso. Para este propósito un tubo de vidrio con un volumen interno de 80 cm³ se llenó con nitrógeno a una temperatura de 20°C y 1 atm de presión. Luego, el tubo se movió lenta y constantemente a través de un recinto donde se quiere hacer la medida. Debido a la expansión térmica, el gas a mayor temperatura escapa del tubo y es capturado sobre un líquido cuya presión de vapor es despreciable. El volumen total que escapa del tubo fue de 35 cm³ a una temperatura de 20 °C y 1 atm de presión.

a. (5 %) Cuantas moles de nitrógeno se usaron para llenar el tubo de vidrio.

b. (5 %) Cuantas moles de nitrógeno escaparon del tubo de vidrio a la temperatura más alta.

c. (5 %) Calcular la temperatura promedio (en °C) de la habitación si la expansión térmica del tubo de vidrio es despreciable.

d. **(5 %)** Cambia la situación si en vez de nitrógeno puro se usa una mezcla de 50% nitrógeno y 50% hidrogeno.

Anexo 1.

Concentración: $M = \frac{n}{v}$ n = mol, V = volumen (L)

Ecuación de estado del gas ideal: PV = nRT

$$n = \text{mol}; \ R = 0.082 \frac{atm*L}{mol*K}; \ T = \text{Temperatura (K)}; \ P = \text{presión (atm)}$$

 $Z = n^{\circ}$ atómico = n° de protones = n° electrones (átomo neutro)

1 tonelada = 1000 kg

ppm (p/v) = partes por millón peso-volumen

ppm (p/p) = partes por millón peso-peso

 0 / 0 (p/v) = porcentaje peso-volumen

 $1\text{Å} = 10^{-10} \text{ m}$

 $V_{esfera} = 4/3\pi R^3$;

Número de Avogadro, $NA = 6.02x10^{23} \text{ mol}^{-1}$

Aquí termina su prueba, gracias por participar.